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Relativistic kinetic theory of pitch angle scattering, slowing down,
and energy deposition in a plasma
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The collisional dynamics of a relativistic electron population in a Lorentzian plasma are investigated and
analyzed within the framework of kinetic theory. The relativistic Fokker-Planck equation describing both
slowing down and pitch angle scattering is derived, analyzed, and solved. The analytical Green function is used
to express the electron range, the range straggling, and the mean radial dispersion as a function of the plasma
parameters. Compared to standard slowing down theories, the inclusion of the pitch angle scattering without
any Gaussian approximation appears to be essential to calculate these quantities.
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I. INTRODUCTION tion of the electron dynamics is required and the issue of

Fast electron energy deposition is a long-standing probpitch angle scattering becomes of prime importance as this

. . : 2 . fater process is the ultimate source of x-ray radiation.
lem which has received a lot of attention within various con- b Y

| I gels h b This paper addresses the issue of the relativistic colli-
texts[1-4]. In plasmas, several models have been put forgiona| dynamics of energetic electrons. Kinetic theory pro-

ward to address and solve this problem. Both pure slowingjges the right framework to address this problem as the
down theory, where pitch angle scattering is ignored, or iMg|ectron-ion interaction cannot be reduced to a slowing down
proved slowing down based on a Gaussian approxim@&pn 54 is intrinsically a random process.

of pitch angle dynamic have been used in the past. Surpris- \hen a relativistic electron interacts with a plasma, two
ingly, no attempt to solve this problem with the exact solu-yheg of interaction determine the dynamics: the electron-
tion of the relativistic electron kinetic equation has been rejectron interaction and the electron-ion interaction. Al-
ported in the literature. In this paper, we show that thisiough the first can be treated as a deterministic slowing
relativistic klnetlc_equatlon can be solved analytlcall_y a”ddown, the second gives rises to pitch angle scattering and
that the characteristics of the electron energy deposition Volgatermines the size of the energy deposition volume. The
ume can be expressed as a function of the initial energy andt that pitch angle scattering is essential to calculate the

the plasma parameters. , heated volume size can be understood as follows. The slow-
Recently, slowing down calculations have been reevalumg down time scale of a relativistic electron is

ated for_laser-plasma stu_diﬁ. The development of a com- :[47-rcner§ In A.J™%, where we use the following notation:
pact, high-power, subpicosecond laser based on chirped g the electron density, is the classical electron radius,
pulse amplification has opened a new field of laser plasmgp ¢ is the velocity of light. The time scale for pitch angle
interaction. In the terawatt to petawatt regime, the eleam@cattering is 21n A/Z In Ay=27/ZA, whereZ is the ion

. . e . e el '
quiver velocity becomes relativistic and a whole set of new, harge state, l0g.is the Coulomb logarithm for relativistic

relativistic nonlinear processes appears. At the beg_inning aﬁ]ectron colliding with background speciés=e, i), and A
the decade, those processes relevant to the design of =n Ai/In Age~1 is the Coulomb logarithm ratio. This scal-

vanc_ed accele;_r ato7rs or aclj(vanced “?_ht Sourczs, such ?S h‘?ﬁg means that the cumulative Coulomb small-angle scatter-
monic genera lor}7,8), wa € genera |q|1j I, an magnetc ing will turn the electron trajectory by an average angle of
field generatlorilo_], were widely investigated. Besides these /2 on a time scale of the order of the slowing down time.
fundamental studies on underdense targets, the proposal fo We will address this issue of simultaneous slowing down

ulse trelat|\/_|st|c gonltme_ant_![es totﬁqenerate lajettof retlar?wstlcand pitch angle scattering without the usual Gaussian ap-
electrons in order 1o ignite a thermonuciear target nas ref)roximation[S]; rather than this approximation, we will con-
ceived a lot of attentiori6]. Within the framework of this

WO i 10 be add Bth derstand sider the solution of the full relativistic kinetic equation. The
program, two ISSues are to be a re‘s@d € understand- - grean function of the relativistic kinetic operator provides
ing of the mechanism producing this burst of relativistic

lect . der t timize th ducti téibr th the right framework to calculate both the transverse and lon-
electrons in order to optimiz€ the production s ép) the itudinal size of the heated volume and has already been
precise evaluation of the hot spot size in order to access t

; N L ccessfully used for current drive and the turbulence prob-
potential for ignition. Moreover, these relativistic electron le

bursts have been identified as a free energy source for x raé(ms[lZ,lE]. It turns out that the key parameters describing
) . ~“@nergy deposition can be exactly evaluated in compact ana-
generation through bremsstrahlung in a dense tariBt gy aep y P

A der t imi h . | lytical form so that the scaling with respect to the various
again, in order o optimize Such a source, a precise evallgsa 5y gng plasma conditions can be explicitly displayed and

analyzed.
This paper is organized as follows. In the next section, we
*Electronic address: rax@Iptp.polytechnique.fr set up the various model assumptions. In Sec. Ill, we recall
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FIG. 1. Ratio of radiative to collisional energy loss in 2 y)
plane. Lower, intermediate, and upper curves correspond, respec- o ] )
tively, to radiative loss equal to 10%, 50%, and 100% of the colli- FIG. 2. Definition of the set of spherical momentum coordinates

sional loss. p,o, ).

and discuss the standard form of the kinetic operator descrifRerturbative analysis, these issues are not addressed here; in
ing relativistic electron dynamics in a cold plasma. We usdhis first paper, we have neglected collective field effects on
the Belieav and Budker relativistic extension of the Landauh€ grounds that fast charge and current neutralization take
collision kernel in order to set up the relativistic kinetic Place in a high conductivity medium.
equation. Then, in Sec. IV, we solve this equation with the ~Then, provided the beam density is small compared to the
use of the Green-function method. Sections V and VI addresackground plasma density, we can neglect interaction be-
the issue of the explicit analytical evaluation of the meanfWeen electrons of the beam so that the electron jet-plasma
penetration depth, the radial dispersion, and the longitudindntéraction reduces to that of a linear superposition of iso-
spreading of the electron beam. In the final section, we sunfated fast electrons.
marize our main findings.

Throughout this paper, in order to simplify this study, we
will use the relativistic slowing down time as the unit of I1l. LANDAU AND BELIAEV-BUDKER KINETIC
time andmg as the unit of momentum. Thus, the unit of OPERATORS

length ish=cX 7, . . R
In order to study the interaction between a relativistic

N1 |109m® electron and a background plasma described=pyand F;,
eml T n Aee Ne ' @) the electron and ion plasma distribution function, we have to
o . ] set up and solve the kinetic equation for the relativistic mo-

The relativistic momentum is denoted= v and the relativ-  mentum electron distribution functiofip,t), including both

isti isv=1/1+p2 - . :
Istic energy isy=y1+p®. collisional drag and angular scattering. We describe the
electron-electron and electron-ion interactions by two colli-
Il. MODEL ASSUMPTIONS sional operator€., andC,; so that the kinetic equation gov-

erning the evolution of the electron momentum distribution
An electron interacting with a plasma loses energy andunction f reads

momentum through two main channe(s:collisions andii)
radiation. Collisional energy loss leads te@ntinuous slow-
ing downwhile bremsstrahlung causes large and sudden en-
ergy losses. Over the energy range considered in this paper, I rorsno
the contribution due to bremsstrahlung remains negligible so 5051 -
that we will restrict our study to the case where collisional
energy loss is the dominant process. The ratio of the radiative
energy lossdy/dx|,,q (See Ref[11]) to the collisional energy
loss |dy/dX, is depicted in Fig. 1 as a line of constant
contour in the(Z,y) plane. Clearly, for electron energy be-
low a few MeV, radiative losses contribute only for about a
few percent of the total loss. e,
Besides this classical assumption, a second assumption
concerns the electric and magnetic fields. Self-generated FiG. 3. Sketch of a generic electron trajectory undergoing small-
magnetic fields reduce the radial spread and increase the pesigle collision scattering off background plasma and definition of
etration, and self-generated electric fields decelerate the elegre three characteristic lengti®) is the mean distance traveled by
trons and decrease the penetration. Although the Greemn electron along,, (r?)*2 is the mean radius, arslis the strag-
function method offers an efficient framework to develop agling factor defined in the text.
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dflot=Cg(f,F;) + Ced f,Fo). (2) nel U(p,p’), which is merely the Fourier transform of the
screened Coulomb potentigl4,15,
As far as we consider fast electroffew MeV) interacting 2@nA L 3
with a thermal background plasma, the thermal velocity of Cap(fafp) = Mzab_ f U(p,p’)
the plasma species can be neglected. Therefore, it is a rea- 8meg  dp
sonable approximation to represent the background distribu-
tion by two “cold” distributions { fo(p’ )— - fa(p)—}d ! (5)

3(py) (3)  Whereqggis the charge of the specissin A,y is the Coulomb

47rp§’ logarithm associated with the populatianinteracting with
specied, andeg is the permittivity of free space. This clas-

wheres=e,i denotes the background species agd|py; Fs  sical Landauform of this kernel is given by16]

is normalized to speciesand densityn,, (p-p")p-p’)

(p-p’)?
wherel is the unit tensor. Beliaev and Budker have devel-
oped the relativistic form of this classical kernel. They ob-

Furthermore, quasineutrality implies=n,=Z n;. These col- tained the following expression, which is a Lorentz invariant
lision operators can be expressed in terms of a collision kerf12,15,17,18

Fs(ps) = Ns

U(p.p’) =1~ , (6)

f F(p)d®p =n. (4)

(yy =p-p)4(yy =p-p)?=1]l —=pp-p'p' +(yy =p-p)(pp' +p P @
vy [(yy —p-p')?- 12

U(p,p’) =

Substituting this relativistic kernel E¢7) into the collision integral€..andCy; [Eq. (5)] and using Eq¢3) for the background
distribution function, we obtain the Fokker-Planck form of the normalidedr) collision operatorCqe+Cg;, the Beliaev-
Budker relativistic operatof12,1§,

19 1+ZA g 1 (92
Codf,F)e+ Coi(F,F)y = = 597 - l ( p2)—— + f, (8)
p°dp 2 p° ip 1-p20¢?

where we have performed the integrations using spherical coordinates in momentun(isghge, where p=p.g+p,€,
+P£L, P=Pp, Px=pV1l- ,U,ZCOSQD, py=pvl- u?sin ¢, and u=cosé (Fig. 2); (e, €,,€) is a Cartesian basis. We have also
introduced the Coulomb logarithm ratio=In A.J/In Ag. For moderately relativistic electrorisp to a few tens of MeYand
for low values ofZ, this ratio is close to unityA ~1 [19].

The first part on the right-hand side of E@) describes the effect of collisional drag due to electron-electron collisions
while the second part describes pitch angle scattering due to both electron-electron and electron-ion collisions. Collisional drag
leads to deterministic slowing down and pitch angle scattering to diffusion in momentum space.

IV. GREEN FUNCTION OF THE BELIAEV-BUDKER OPERATOR

We now consider the following initial value problem: a relativistic electron is embedded in a plasma with a morpgntum
and a positiorr;=(0,0,0 at timet,=0. This corresponds to an initial distribution function represented by a shifted Dirac
function f(p,ty) =8(p—po). The evolution off(p,t)(t>ty) is just the Green function of the Beliaev-Budker operator and we
havef(p,t)=G(p,po.t,ty), whereG is the solution of

0G_10 oo 1+ZAy| o . o0 1 & |._dp-po)
ot prap 2 pPlow "op 1-p20g2]0 T P

—— 0 — uo) (@ — @o) 8t — to). 9

(Po, s @) are the spherical initial momentum coordinates at tigyed. Despite this apparent complexi€y,can be explicitly
calculated[12,2Q. It is convenient to expand the solution of E§) on the spherical harmonics basis since they are the
eigenfunctions of the angular part of the collision opergt@}. With this spherical harmonic expansion, the solution of @Y.
can be written as
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|=+00 m=+|
S(arctarfp) — p — arctaripy) + po — (t — t)) " (yo+ 1) |H0+D@A+D/2]
G= P-F PR T M-t S S Y )Y (ko 0) | ore . (10
¥ 1=0 me-I Po(y+1)
[
where the functior¥|" is the spherical harmoni@1] andH arctarip) — p— arctaripy) + pp— (t—t)) =0. (12

is the Heaviside function. It is important to stress that Eqg. i ) .
(10) contains the complete collisional history of a relativistic F7om this relation between momentum and time, we can eas-

electron beam moving in a background plasma and that thidy OPtain the slowing down times—t, by settingp=0 att
description does not require any Gaussian-type approxima:-ts’
tion for pitch angle scattering correlation. Clearly, the pitch
angle diffusion is not described by a Gaussian kernel and the
algebraic behavior of thg. dynamic invalidates the expo- Wherets is normalized tor. From the implicit relation be-
nential dynamic assumed in such a Gaussian-type approxiweenp andt, we obtain the following expression for the
mation. In this latter approximation, the argument of the ex-Collisional energy-loss ratdy/dt=-y/p. G is a transition
ponential is the square of the angle so that large-angl@robability and is also gropagatorso that it can be used to
deviation resulting from cumulative small-angle scatteringexpress the evolution of arfyp,t),

cannot be described; moreover, the tail of the exponential

ts= po — arctanpy, (13

decreases faster than any power of this argument, although f(p,t) :f dpof (Po,t) G(P, Port, to)- (14)
the behavior of the tail of the fully kinetic is clearly alge-
braic.

In the following, we are concerned about the propagation
of a single relativistic electron, as the generalization to an
arbitrary initial distribution functionf(py) can be easily
achieved through linear combination in Ed4).

This Green functionG(p,pg,t,ty) has a straightforward
physical interpretation in term dfansition probability an
electron starting at timg with momentump, will be found
with the probability G(p,pg,t,tp)dp at later timet in the
momentum volume elemedp centered aroungd. Note that
this Green function fulfills the Chapman-Kolmogorov iden- v ENERGY DEPOSITION PROFILE AND MEAN

tity PENETRATION DEPTH

_ , - / / We have depicted a generic electron trajectory in Fig. 3,
G(p,pot,to) -fdp Glp.p",L)G(" Pt lo), (11) where (e,,€,,€,) is a Cartesian basis. Kinetic energy is de-
livered to the target plasma all along the path followed by a
fast electron. Hence, to evaluate the size of the plasma vol-
ume heated by the relativistic electron, we have to calculate
not only the penetration depth but also the radial dispersion

whose meaning is the following: the transition probability
from pg atty to p att can be obtained by summing over all
possible intermediate statps$ at timet’ the product of the

probabilities  of - transition (po,to) —(p’,t') and (p.t') of the electrons and the longitudinal spreading.

—(P.b. Thus, to quantify the size of the heated volume, we define

The éfunction appearing in the Green function E80) IS yhree characteristic lengthg,22: (i) the mean penetration

a consequence of the deterministic slowing down of the fas&e th(z). (ii) the lonaitudinal dispersion atraaaling factor
electron due to collision with background cold electrons. The P2, (it) g P ggiing

— [TAN2_ {72\ dafini Lot ;
T ) S s=(2°—(z°) defining the statistical spreading of a set of
function inside thes symbol gives an implicit form fop(t), electrons with the same initial condition, afd) the mean

Y2
Z=1-3
2.5
1.8 without pitch
angle scattering
'g 2
1.6
Y with pitch E 1.5
1.4 angle scattering 'ﬁ
Z=2 E
Z=1 ) 1
1.2 ~
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FIG. 4. Energy deposition profile of a 1 MeV electron fér

=1 andZ=2. Also plotted is the case where pitch angle scattering FIG. 5. Slowing down length foZ=1, 3/2, 2, 5/2, and 3. The
has been ignored. Length is normalized\tgsee Eq(1)]. upper curve is foZ=1. Length is normalized ta [see Eq(1)].
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radial sizeof the heated volumg/(r?). Here, the bracket§
stand for an average over the various realizations of the col- (9(p)) = | dp g(P)G(p,po.t.to), (16)
lisional noise. An explicit procedure for this average is de-
fined below. whereg(p) is any function of the stochastic varialje As

we have expande@ over the set of the spherical harmonic

functionsY", we expr he longitudinal velocity over th
A. Mean penetration depth unctionsY|", we express the longitudinal velocity over the

same basis,
We will consider the mean longitudinal position as a func-
i i i i dz |4
tion of the energy. In qrder to df—:-termmq this quantity, we az_ ECOSQ: —EYE(M,@- 17)
write down thestochastic Langevin equatiasf motion av- dt vy 3y

eraged over the various realizations of the collisional noise,
We insert Eq.(17) into Eq. (15 and perform the average

(16). We obtain the following expression:
dz d(z) p
— )=—={-cos 4. (15
woa Ay 4D _ [ o[ AT PN )G Pty (18
The velocityv,=p cos 6/ y is arandomfunction of time be- dt PN 73 y ! #: )PP o)

cause of pitch angle scattering. Then, based on the equiva-

lence between d&okker-Planckequation and d.angevin  The integration over the momentum volume elemept
equation[12], the previous statistical average over the real-=p?du d¢ can be achieved with the help of the orthogonal
izations of the collisional noise can be performed through theroperties of the spherical harmonics and the Dirac identity
following substitution[7]: S(F(x)) =2 Sx=x)/|f"(X)|x=x- Thus
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FIG. 7. Slowing down lengtiz)(1;y,), mean radius tqr??,
and straggling lengtk vs initial energyy, for Z=1 (solid lineg and
Z=2 (dotted line$. (a) Energyy, range from 1 to 4(b) energyy,
range from 1 to 20. All lengths are normalized Xp see Eq.(1).
Upper curves correspond t@), intermediate curves ta22 and
lower curves tos.

d(arctarip) — p — arctaripg) + po — (t — to))
YA()

G
where p(pg,tp,t) is the zero forp of the function in thes
symbol. The velocity along, is finally given by

4@ __p) { [0 - 1(3+ 1) }@“”’2 20
dt A0 [0+ (%-1) ’
where p(t) [¢(t)] must be understood a(pg,ty,t)

[ ¥(po,to,t)] and we have sety=1 (by an appropriate orien-
tation of the Cartesian axyisSince we assume that the elec-

3(p - p(Po,to,t)), (19

trons lose their energy continuously, a one-to-one relation

can be established between titnand energyy. The use of

the energy rather than time is not a drawback. On the con-
trary, as we address the issue of the energy deposition as a 1

function of position,y is the pertinent variable to express
range, straggling, and radius. Usinlg/dt=-vy/p and Eq.

(20), we obtain the inverse of the energy-loss rate per unit

length,

42 _ p_z{ (y=D(p+ 1) }(Z“M
dy  l(r+D(%-1 '
Finally, an integration over the energy frogg to v with the

initial condition (2)(yg, v5)=0 gives us the average distance
traveled alonge, as a function of the energy,

(21)
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FIG. 8. Slowing down length vs ion charge (a) For yy=1.2,
1.4,1.6, 1.8, and 2; the upper curve is ig=2. (b) For yy=2, 4, 6,
8, and 10; the upper curve is fgp=10.

Yo+ 1)(ZA+1)/2J70 dyp_z
Y%-1 y 72

Equation(22) expresses the average distance traveled by a
relativistic electron interacting with a plasma with ion charge
stateZ as a function of its initial energyy.

The average full slowing down length, i.e., te®pping
length is obtained by setting in E@22) the energyy to rest
energyy=1, when the electron stops. For small valueg pf
we can explicitly express this stopping length. For example,
assumingA=1 and a hydrogenlike target=1, we obtain
from Eq.(22)

y-1
y+1

(ZA+D)/2
@Dy = ( )

(22)

<>

-2

-
= =J- IR I- NV RN UV S

(=)
—_

<z>

FIG. 9. Energy deposition in a hydrogenlike plastda 1) for
electron energy ranging fromy=2 to y,=10.
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1 1
@5y = Yo (7’0_ —=21n 70)- (23
Y%-1 Yo

For example, the explicit expression fAe= 3 is reported in
the final section.

In Fig. 4, we have plotted the energyas a function of
the traveled length for an initial energy equal to 1 MeV
(yp=2) for Z=1 and 2; in order to illustrate the impact of the
pitch angle scattering, we have also plotted the very same
expression when pitch angle scattering is igndi2d +1 is
set to 0 in Eq(22)]. Clearly, pitch angle scattering shortens
this slowing down length by a factor of the order 2. Ebr
=1, half of the initial energy is deposited in the plasma on
the last two-fifths of the stopping length. Consider a plasma
with Z=1 and n=10°2 cm 3 for which the unit lengthx
=20 um. From the formula23) applied to a 1 MeV elec-
tron, electron energy deposition ends up afterrii and after
10 wm when pitch angle scattering is neglected. Even for the
caseZ=1, ignoring pitch angle scattering gives rise to a large
deviation from the full relativistic kinetic model. Obviously
this deviation will increase witi so that the standard slow-
ing down model becomes particularly inappropriate for the
high Z target.

Plotted in Fig. 5 is the normalized electron penetration
depth(z)(1;v,) as a function of initial energyy for five low
values ofZA=1,3/2,2,5/2, and 3; thimitial kinetic energy
vo—1 ranges from 0 MeV to 2.5 MeV. Finally, in Fig. 6, we
have displayed this normalized penetration depth for various
values of the charge state and initial energy; this parametric L .
study clearly displays that the mean penetration depth tendeﬁestlrc;.nligi.tiglngr:ge); desolsjzllotn '2 ; (gc;rr?geny(leog():)?sma 1) for
to be a linear function of the initial energy, at an energy gy equal i % '
threshold function of the charge state. This asymptotic be-

= /‘(
,'g /
=
=

havior is due to the ultrarelativistic limp~ y in Eq. (22) N ,dz = R
and to the smoothing effect of the highexponent in Eq. 20 = 0 dt dt’ ()= 0 dtv (). (26)
(22).

Substituting Eq(26) into Eq. (25 and commuting integra-

B. Straggling effect tion and averaging bracket yields

The inclusion of pitch angle scattering also has a dramatic (2 Jt 4t (oDt 27
t'(w(DuLt")).

effect on the dispersion of the penetration depth, namely the at =2
straggling effect[22]. Many electrons will have the mean

range although some will have a higher range and some wi 5 . . L
have less than this average. This results in a finite width tél-o expressz > we integrate E(27) with respect o time in
the electron range distribution known mge stragglingTo ~ Order to obtain
define this range straggling we introduce the root-mean-

square deviation around the average longitudinal range, Bt te) = zft dt’ft, At (v ()v ) (28)
1 z z .
0 0

(7, %0) = () (%, v0) = (27, %) - (24)

In the previous section, we have already calcula®dso
that in order to calculats, we have now to evaluat&?).
This latter quantity is related to theelocity autocorrelation

0

The quantityl’,(t”,t") =(vt")v,(t")) is thetwo time longitu-
dinal velocity autocorrelation functioand can be calculated
with the Green function of the collision operator. Note that in
I',, we havet=t'=t".

function We first note that An electron starting at timg=0 with the momentunp,
d(Z2) d2 dz(t) will be found with the probabilityG(p’,po,t’,ty)dp at later
ot -\t =2 Z(UT : (25  time t’ in the momentum volume elememlp’ centered

aroundp’. Then, this very same electron will be found at

Then, for a given realization of the stochastic variaple time t” with momentum p” with the probability
=cos#, the electron trajectory is a Brownian path whoseG(p”,p’,t",t")dp” in the momentum volume elemenp”
projection one, is the (randomn) distancez(t), around p”. Hence, the conditional probabilitfdensity to
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find this electron at tim& with momentunp’ and at timet”  all the realization of the produet,(t”)v,(t") over this prob-
with momentump” is the productP(p”,p’,po.t",t",ty) of  ability P,
these two probabilities,

P(p”,p’,po.t",t’, to)dp’dp” Fzz(t’,t):ffdp dp’P(p’,p,po,t’,t,to)p—p,cosa coso'.
Yy
=G(p",p’ t",t")G(p",po,t’, t)dp"dp”. (29

Note that if we integrate this later formula over the interme-

diate momentump’, we just recover the Chapman- After some lengthy calculations, reported in the Appendix,
Kolmogorov identity Eq(11). The two-time longitudinal ve- involving Clebsch-Gordan calculus, we end up with an ex-
locity autocorrelation functiod™,(t’,t”) is the average over plicit formula for (z%),

(30)

@A) (yiv) = gjy dy'L_l(?"_‘l)(ZAﬂ)'sz' i 1<V’+ 1><LA+1>/2
1700 12 ’ > -
° yeAyHl y? \y-1
Y0 Yo
+1\[B@ADY2 oy 2_q [ g1\
* 2( " ) J d’}/”)/ 12 ’}// . (31)
Yoo 1 Yo ’)/ '}/ +1

These integrals can be evaluated for integer valueg\of 1/2; despite the fact that the standard symbolic calculator provides
an analytical closed form of these integral, the final result contains a fairly large number of terms so that we report here only
the Z=1 case corresponding to a hydrogenlike plasma,

(P)(L;70) ={= 9 - o + 1713 + 167292 — 2133 + 4823 + 213y + 4872y — 171y + 162 y3 + 995 + 9
+192L(2,~ 70 %(1 + 70)> — 247N 70(3 + 155+ 995 + 5%5) — 120(L + yo)In %o[3 — 6y~ 275~ 6%

+ 395~ 16y0(1 + 79 An(L + %0 M[9%(%0~ D], (32
[
where L, is the dilogarithm functiorf23]. d(r? d(x?+y?) dx
In Fig. 7, we have plotted(1;7,) as a function of the . at =4 X(t)a : (33

initial energy forZ=1 and 2. For low initial energy, below
2 MeV, s is of order of(2)/2. This means that the energy Along the very same steps used to derive @§) from Eq.
deposition volumehot spoj extended over a distance of the (25), we can relate this mean-square radius totthe-time
order of the stopping length, i.e., the hot spot is broad. Howiransverse  velocity  autocorrelation  function 'y
ever, for higher energy above 2 MejFig. 7(b)], (20 in-  =(u,{")v,(t")),

creases faster thaand the energy deposition localization is
better defined than at low energy.

t t’
(r(tt) =4 J dt’ f dt"(u(t")vy(t')), (34)
VI. MEAN-SQUARE RADIUS 0 0

As a result of multiple small-angle Coulomb scattering off whereT',, is given by
background plasma, a fast electron beam expands radially
during its propagation. This radial expansion determines the = f f dp dp’P
size of the energy deposition volume. While this effect is x
supposed to be important only for relatively highwe will

!

(p,1p1p01t,|t!t0)p_p,
YY

show that it has, in fact, a dramatic impact even for a hydro- Xsin 6 sin ¢'cos ¢ cos ¢’ (39
gen plasma.

To quantify this radial spreading, we define the meanThe explicit calculation ofr?), reported in the Appendix,
square radiugr?), leads to the final result
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(¥ v = EJVO dny_l(Vl__l)(ZMl)lzfyo dy’ Y2 - 1( Y+ _’]_)(ZA+1)/2
’ 3 ,y/Z 7/ + 1 ) —’)/,2 ,}/, ~ 1
7 Y
_ ( Yot 1)[3(2A+1)]l2f)’o gy Y2 - 1( Y - 1>ZA+1 -
1 ¥ Y2 \y'+1

Note that Eq(36) differs from Eq.(31) only by a numerical factor inside the integral ovét TheZ=1 andZ=2 cases are
displayed in Fig. 7; it confirms the expected dramatic impact of pitch angle scatteridg fornd 2:(r?) ~(z)2. For the sake
of completeness, we report below the analytical resuliZfed.,

4 .
(rA(1;y0) =- o{9 =45y Amyy + 138y] + 121295 — 138y + 12123 + 45y + Amyg — 993 + 48y, Lio(— ) (1 + yp)°

— 12y, In (3 + 3y + 993+ ¥9) + By6(1 + y0)In o[ 3+ 10yp— 373+ 8(1 + 0)2n(L + yo) [ ¥3(v0 — V°I;
(37)

whenZ is an integer{r?) can also be expressed analyticg®a].

VII. DISCUSSION AND CONCLUSION tain number of other important issues. The impact of beam

. self-generated electric and magnetic field can be explored
In this paper, we have addressed the problem of the Cha[ﬁrough a perturbative expansion based on the field-free

acteristic size of the energy deposition volume for relativisticy s tiora. A criterion for self-pinching can be estab-

ﬁlligttr%r;stggeéiztrmg \i/lltg: gz:?egla;zrgi;:geﬁg{e%p? V",{Tﬁ;ﬁshed. The calculation of bremsstrahlung emission by rela-
) 9y P X y fivistic electrons relies on an accurate description of the en-

lengths: the stopping length, the straggling length, and th%rgy and the pitch angle dynamic; again the Green function

mean-square transverse radius. In or.d.er'to _caI(_:uIate the%f is the right tool to provide this description. All of these
three lengths, we have solved the relativistic kinetic equation

which extends théandaucollisional operator to the relativ- topics will be considered in further studies.

istic regime. The method proposed here, based on the Green

function of this relativistic operator, turned out to be very

efficient; for example, we were able to express these three  APPENDIX: CALCULATION OF THE VELOCITY

lengths. Equatioii22), which is one of the three main results AUTOCORRELATION FUNCTION
of this paper, gives the range of a relativistic electron in a o _ _
Lorentzian plasma. Our method is not restricted to Zkel 1. The longitudinal autocorrelation function
hydrogenlike case. As a matter of fact, {or 3 the stopping ) ) i )
length is simply given by We report here in this appendix the calculation of the
longitudinal  velocity  autocorrelation  function T',,
_ ) B = (t"v,t")). We first express the velocity, and v, with
[<Z>(1’7’°)} = ( Y%t 1) (4 In 4% S+ L 78) the spherical momentum coordinates
cm Yo—1 (1+y) %
1 [10°m™
“nAel ne | (38 P P
N fee M v,=—C0S6H, vy=—Sin 6 Ccosep. (A1)
Y Y

Moreover, the two other results Eg81) and (36) provide
the two other characteristic lengths of the hot spot.
This set of formulas allows us to study the parametricthen, using the identities
dependence of the hot spot size. The impacZ @ in fact
important, as illustrated in Fig. 8, where the behavior of the
stopping length as a function of the charge state is depicted.
In Fig. 9, we have plotted?) as a function ofz) for several cos §= /4_77Yo(0 )
initial energies in order to visualize the heated volume. A 3D 3 LN
plot of the very same curves is depicted in Fig. 10 and pro-
vides a representation of the shape and size of the heated
volume for initial energy equal to 1 MeV and 5 MeV.

Besides this problem of the hot spot characteristic sizes, . 27, |
sin 6= ?[Yl(e, @) = Y=4(0,9)],

our Green-function formalism is well suited to address a cer- (A2)
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we write down the component of the velocity in terms of 4w ) o
spherical harmonic functions L Att) = ?ffdp dp'G(p,p’,t,t")
47Pye PP 20, 0)¥2(0
v, = 3 Py 16,9), X G(p’,po,t’ to) ¥ 1(0,0)Y1(6',¢").

(A4)

_ _|2mP 4 RV In Eqg. (A4), the volume element is defined adp
=\ 3 y[Yl(e"p) Y-(f.0)] (A3) =p?dp Q). We consider first the angular integration over
d?Q) and d?Q)’. Substituting Eq(10) for both Green func-
As discussed in Sec. V B, the longitudinal velocity autocor-tions into Eq.(A4), we obtain the following expression for
relation function is given by the angular part of the integral in EGA4),

+o0 M=+ 40 m'=+’

E > > X f d?Q f QYP(6, @Y™ (0, 0")YT (6, ")YT (60,00 Y 6,8)YXE', &)

3I0m:I| =0m'=-I’

_ ’ [+ (z+1) /4 r_ + [I’(I’+1)(Z+1)]/4
y (y=-D(y' +1) (Y = D(y+1)

A5
(y+ Dy -1 (Y + Dy~ 1) (AS)

The integration over the solid angtB() can be performed using orthogonality properties of the spherical harmonics,

f Y6, @)Y (6,0) = &1 S (AB)

whose application to EqA5) yields

(y=D(y' +1) }(Z”)’Z{ (¥ = D(y+1) }[I’<I’+1)<Z+1)]/4

4 m’*
FALt) = ?EOY" e ‘”"){ (y+ Dy -1 (v +D(%-1)

X f QY (0, YT (0,0 )Y @) (A7)

In Eq. (A7), we have to integrate the product of three spheri-ficient (YIYSY9) and(YJY3Y?) to calculate. With the use of a
cal harmonic functions. For clarity, we introduce the follow- Clebsch-Gordan calculator, we end up with
ing notation:

(YT )‘_Y|2(90v¢’o) <Y‘1’Y8Y‘1’>=§, <Y8Y2Y2>=§(3 cos’p=1). (A9)

20) y™* My Mg .
8 f o Yll (G'QD)le (0'¢)Y'3 (O After performing the integration over the solid angle, we
(A8) have to integrate ovgr andp’ in Eq. (A4). To achieve this
task, we take advantage of the following identity:

such quantities appearing in E&7) describe the correlation

of the pitch angle at different time and include the initial

pitch angled,. From the theory of angular momentum addi- S(F(x)) = E 3(X = ;) (AL0)

tion, the integral of the product of three spherical harmonics [f"(x )|X_X

is proportional to the Clebsch-Gordan coefficients and van-

ishes unless the followingelection rulesare satisfied21]:

(i) [l=lg<l,<Iy+lg, (i) I;+I,+15 is an even number, and where thex's are the zero of the functioh This allows us to

(iii) my+mz=my. Thus, in Eq.(A7), we have only two coef- reduce thes function in the Green function to the form
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dlarctanp — p — arctanpy + py — (t —tp)]

(t
= %&p - p(Po,to: 1))

wherep(t, pg,tp) is the solution of the equation

(A11)

rAtt) =

1p®p(t’) [([V(t) — [ p(t) + 1])(Z+1)/2
3yt L\ [ + L[ o(t) = 1]

+(3 cos? 6p— 1)(

PHYSICAL REVIEW E 70, 046405(2004)

arctanp—p-—arctanpy+ po— (t—t5) =0. (Al12)
Using this relation, integration ovgr and p’ is straightfor-
ward and the longitudinal correlation function is finally
given by

yt) - 1>(Z+1>’2< yt') - 1)“( Yo+ 1>[3<Z+1>]’2}
yt) +1 yt') +1 Y- 1 '
(A13)

We note, as expected, that this autocorrelation function depends on the initial pitch9grigléhe main part of the paper, we
consider a well-collimated beam and we can orientate the system of the axis suéfrtbatn this case, the numerical factor
in the square brackets reduces to 2. To calculzte we insert Eq(A13) into Eq.(28) and consider the change of variable
t— 7. Again, using Eq(Al1) we recover the expression E@1).

2. The transverse autocorrelation function

The transverse autocorrelation function is calculated in a very similar way. In order to avoid lengthy calculations, we just

report the final result here,

FXX(t!t,) =

Byt L\ [AD) + L] AL) — 1]

This allows us to recover E¢36) when cosf,=1.

2

LpHp(t) {([ym ~ 1[y(t) + 1] )Mz _ 3 c0s%,- 1( ¥t - 1><Z+1>’2< §t) - 1)“( %0+ 1)[3&*”]’2}

yt)+1 Ht')+1 Yot1

(A14)
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