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The collisional dynamics of a relativistic electron population in a Lorentzian plasma are investigated and
analyzed within the framework of kinetic theory. The relativistic Fokker-Planck equation describing both
slowing down and pitch angle scattering is derived, analyzed, and solved. The analytical Green function is used
to express the electron range, the range straggling, and the mean radial dispersion as a function of the plasma
parameters. Compared to standard slowing down theories, the inclusion of the pitch angle scattering without
any Gaussian approximation appears to be essential to calculate these quantities.
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I. INTRODUCTION

Fast electron energy deposition is a long-standing prob-
lem which has received a lot of attention within various con-
texts [1–4]. In plasmas, several models have been put for-
ward to address and solve this problem. Both pure slowing
down theory, where pitch angle scattering is ignored, or im-
proved slowing down based on a Gaussian approximation[5]
of pitch angle dynamic have been used in the past. Surpris-
ingly, no attempt to solve this problem with the exact solu-
tion of the relativistic electron kinetic equation has been re-
ported in the literature. In this paper, we show that this
relativistic kinetic equation can be solved analytically and
that the characteristics of the electron energy deposition vol-
ume can be expressed as a function of the initial energy and
the plasma parameters.

Recently, slowing down calculations have been reevalu-
ated for laser-plasma studies[6]. The development of a com-
pact, high-power, subpicosecond laser based on chirped
pulse amplification has opened a new field of laser plasma
interaction. In the terawatt to petawatt regime, the electron
quiver velocity becomes relativistic and a whole set of new
relativistic nonlinear processes appears. At the beginning of
the decade, those processes relevant to the design of ad-
vanced accelerators or advanced light sources, such as har-
monic generation[7,8], wake generation[9], and magnetic
field generation[10], were widely investigated. Besides these
fundamental studies on underdense targets, the proposal to
use relativistic nonlinearities to generate a jet of relativistic
electrons in order to ignite a thermonuclear target has re-
ceived a lot of attention[6]. Within the framework of this
program, two issues are to be addressed:(i) the understand-
ing of the mechanism producing this burst of relativistic
electrons in order to optimize the production step;(ii ) the
precise evaluation of the hot spot size in order to access the
potential for ignition. Moreover, these relativistic electron
bursts have been identified as a free energy source for x-ray
generation through bremsstrahlung in a dense target[11];
again, in order to optimize such a source, a precise evalua-

tion of the electron dynamics is required and the issue of
pitch angle scattering becomes of prime importance as this
later process is the ultimate source of x-ray radiation.

This paper addresses the issue of the relativistic colli-
sional dynamics of energetic electrons. Kinetic theory pro-
vides the right framework to address this problem as the
electron-ion interaction cannot be reduced to a slowing down
and is intrinsically a random process.

When a relativistic electron interacts with a plasma, two
types of interaction determine the dynamics: the electron-
electron interaction and the electron-ion interaction. Al-
though the first can be treated as a deterministic slowing
down, the second gives rises to pitch angle scattering and
determines the size of the energy deposition volume. The
fact that pitch angle scattering is essential to calculate the
heated volume size can be understood as follows. The slow-
ing down time scale of a relativistic electron ist
=f4pcnere

2 ln Leeg−1, where we use the following notation:
ne is the electron density,re is the classical electron radius,
andc is the velocity of light. The time scale for pitch angle
scattering is 2t ln Lee/Z ln Lei=2t /ZL, whereZ is the ion
charge state, logLes is the Coulomb logarithm for relativistic
electron colliding with background speciesss=e, id, and L
=ln Lei/ ln Lee,1 is the Coulomb logarithm ratio. This scal-
ing means that the cumulative Coulomb small-angle scatter-
ing will turn the electron trajectory by an average angle of
p /2 on a time scale of the order of the slowing down time.

We will address this issue of simultaneous slowing down
and pitch angle scattering without the usual Gaussian ap-
proximation[5]; rather than this approximation, we will con-
sider the solution of the full relativistic kinetic equation. The
Green function of the relativistic kinetic operator provides
the right framework to calculate both the transverse and lon-
gitudinal size of the heated volume and has already been
successfully used for current drive and the turbulence prob-
lems [12,13]. It turns out that the key parameters describing
energy deposition can be exactly evaluated in compact ana-
lytical form so that the scaling with respect to the various
beam and plasma conditions can be explicitly displayed and
analyzed.

This paper is organized as follows. In the next section, we
set up the various model assumptions. In Sec. III, we recall*Electronic address: rax@lptp.polytechnique.fr
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and discuss the standard form of the kinetic operator describ-
ing relativistic electron dynamics in a cold plasma. We use
the Belieav and Budker relativistic extension of the Landau
collision kernel in order to set up the relativistic kinetic
equation. Then, in Sec. IV, we solve this equation with the
use of the Green-function method. Sections V and VI address
the issue of the explicit analytical evaluation of the mean
penetration depth, the radial dispersion, and the longitudinal
spreading of the electron beam. In the final section, we sum-
marize our main findings.

Throughout this paper, in order to simplify this study, we
will use the relativistic slowing down timet as the unit of
time andmec as the unit of momentum. Thus, the unit of
length isl=c3t,

F l

cm
G =

1

ln Lee
F1030 m−3

ne
G . s1d

The relativistic momentum is denotedp=gv and the relativ-
istic energy isg=Î1+p2.

II. MODEL ASSUMPTIONS

An electron interacting with a plasma loses energy and
momentum through two main channels:(i) collisions and(ii )
radiation. Collisional energy loss leads to acontinuous slow-
ing downwhile bremsstrahlung causes large and sudden en-
ergy losses. Over the energy range considered in this paper,
the contribution due to bremsstrahlung remains negligible so
that we will restrict our study to the case where collisional
energy loss is the dominant process. The ratio of the radiative
energy lossudg /dxurad (see Ref.[11]) to the collisional energy
loss udg /dxucol is depicted in Fig. 1 as a line of constant
contour in thesZ,gd plane. Clearly, for electron energy be-
low a few MeV, radiative losses contribute only for about a
few percent of the total loss.

Besides this classical assumption, a second assumption
concerns the electric and magnetic fields. Self-generated
magnetic fields reduce the radial spread and increase the pen-
etration, and self-generated electric fields decelerate the elec-
trons and decrease the penetration. Although the Green-
function method offers an efficient framework to develop a

perturbative analysis, these issues are not addressed here; in
this first paper, we have neglected collective field effects on
the grounds that fast charge and current neutralization take
place in a high conductivity medium.

Then, provided the beam density is small compared to the
background plasma density, we can neglect interaction be-
tween electrons of the beam so that the electron jet-plasma
interaction reduces to that of a linear superposition of iso-
lated fast electrons.

III. LANDAU AND BELIAEV-BUDKER KINETIC
OPERATORS

In order to study the interaction between a relativistic
electron and a background plasma described byFe and Fi,
the electron and ion plasma distribution function, we have to
set up and solve the kinetic equation for the relativistic mo-
mentum electron distribution functionfsp ,td, including both
collisional drag and angular scattering. We describe the
electron-electron and electron-ion interactions by two colli-
sional operatorsCee andCei so that the kinetic equation gov-
erning the evolution of the electron momentum distribution
function f reads

FIG. 2. Definition of the set of spherical momentum coordinates
sp,u ,fd.

FIG. 3. Sketch of a generic electron trajectory undergoing small-
angle collision scattering off background plasma and definition of
the three characteristic lengths:kzl is the mean distance traveled by
an electron alongez, kr2l1/2 is the mean radius, ands is the strag-
gling factor defined in the text.

FIG. 1. Ratio of radiative to collisional energy loss in thesZ,gd
plane. Lower, intermediate, and upper curves correspond, respec-
tively, to radiative loss equal to 10%, 50%, and 100% of the colli-
sional loss.
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] f/] t = Ceisf,Fid + Ceesf,Fed. s2d

As far as we consider fast electrons(few MeV) interacting
with a thermal background plasma, the thermal velocity of
the plasma species can be neglected. Therefore, it is a rea-
sonable approximation to represent the background distribu-
tion by two “cold” distributions

Fsspsd = ns
dspsd
4pps

2 , s3d

wheres=e, i denotes the background species andps= upsu; Fs
is normalized to speciess and densityns,

E Fsspdd3p = ns. s4d

Furthermore, quasineutrality impliesn=ne=Z ni. These col-
lision operators can be expressed in terms of a collision ker-

nel Usp ,p8d, which is merely the Fourier transform of the
screened Coulomb potential[14,15],

Cabsfa, fbd =
qa

2qb
2lnLab

8p«0
2

]

] p
·E Usp,p8d

3F fbsp8d
] fa

] p
− faspd

] fb

] p
Gdp8, s5d

whereqs is the charge of the speciess, ln Lab is the Coulomb
logarithm associated with the populationa interacting with
speciesb, and«0 is the permittivity of free space. This clas-
sical Landauform of this kernel is given by[16]

Usp,p8d = I −
sp − p8dsp − p8d

sp − p8d2 , s6d

where I is the unit tensor. Beliaev and Budker have devel-
oped the relativistic form of this classical kernel. They ob-
tained the following expression, which is a Lorentz invariant
[12,15,17,18]:

Usp,p8d =
sgg8 − p ·p8d2hfsgg8 − p ·p8d2 − 1gI − pp − p8p8 + sgg8 − p ·p8dspp8 + p8pdj

gg8fsgg8 − p ·p8d2 − 1g3/2 . s7d

Substituting this relativistic kernel Eq.(7) into the collision integralsCeeandCei [Eq. (5)] and using Eq.(3) for the background
distribution function, we obtain the Fokker-Planck form of the normalized(to t) collision operatorCee+Cei, the Beliaev-
Budker relativistic operator[12,18],

Ceesf,Fde + Ceisf,Fdi = −
1

p2

]

] p
g2f −

1 + ZL

2

g

p3F ]

] m
s1 − m2d

]

] m
+

1

1 − m2

]2

] w2G f , s8d

where we have performed the integrations using spherical coordinates in momentum spacesp,u ,wd, wherep=pxex+pyey

+pzez, pz=pm, px=pÎ1−m2cosw, py=pÎ1−m2sin w, and m=cosu (Fig. 2); sex,ey,ezd is a Cartesian basis. We have also
introduced the Coulomb logarithm ratioL=ln Lee/ ln Lei. For moderately relativistic electrons(up to a few tens of MeV) and
for low values ofZ, this ratio is close to unityL,1 [19].

The first part on the right-hand side of Eq.(8) describes the effect of collisional drag due to electron-electron collisions
while the second part describes pitch angle scattering due to both electron-electron and electron-ion collisions. Collisional drag
leads to deterministic slowing down and pitch angle scattering to diffusion in momentum space.

IV. GREEN FUNCTION OF THE BELIAEV-BUDKER OPERATOR

We now consider the following initial value problem: a relativistic electron is embedded in a plasma with a momentump0
and a positionr 0=s0,0,0d at time t0=0. This corresponds to an initial distribution function represented by a shifted Dirac
function fsp ,t0d=dsp−p0d. The evolution offsp ,tdst. t0d is just the Green function of the Beliaev-Budker operator and we
have fsp ,td=Gsp ,p0,t ,t0d, whereG is the solution of

] G

] t
−

1

p2

]

] p
g2G −

1 + ZL

2

g

p3F ]

] m
s1 − m2d

]

] m
+

1

1 − m2

]2

] w2GG =
dsp − p0d

p2 dsm − m0ddsw − w0ddst − t0d. s9d

sp0,m0,w0d are the spherical initial momentum coordinates at timet0=0. Despite this apparent complexity,G can be explicitly
calculated[12,20]. It is convenient to expand the solution of Eq.(9) on the spherical harmonics basis since they are the
eigenfunctions of the angular part of the collision operator[16]. With this spherical harmonic expansion, the solution of Eq.(9)
can be written as

RELATIVISTIC KINETIC THEORY OF PITCH ANGLE… PHYSICAL REVIEW E 70, 046405(2004)

046405-3



G =
d„arctanspd − p − arctansp0d + p0 − st − t0d…

g2 Hst − t0d o
l=0

l=+`

o
m=−l

m=+l

Yl
msm,wdYl

m*sm0,w0dFpsg0 + 1d
p0sg + 1dGflsl+1dsZL+1d/2g

, s10d

where the functionYl
m is the spherical harmonic[21] andH

is the Heaviside function. It is important to stress that Eq.
(10) contains the complete collisional history of a relativistic
electron beam moving in a background plasma and that this
description does not require any Gaussian-type approxima-
tion for pitch angle scattering correlation. Clearly, the pitch
angle diffusion is not described by a Gaussian kernel and the
algebraic behavior of them dynamic invalidates the expo-
nential dynamic assumed in such a Gaussian-type approxi-
mation. In this latter approximation, the argument of the ex-
ponential is the square of the angle so that large-angle
deviation resulting from cumulative small-angle scattering
cannot be described; moreover, the tail of the exponential
decreases faster than any power of this argument, although
the behavior of the tail of the fully kinetic is clearly alge-
braic.

This Green functionGsp ,p0,t ,t0d has a straightforward
physical interpretation in term oftransition probability: an
electron starting at timet0 with momentump0 will be found
with the probabilityGsp ,p0,t ,t0ddp at later timet in the
momentum volume elementdp centered aroundp. Note that
this Green function fulfills the Chapman-Kolmogorov iden-
tity

Gsp,p0,t,t0d =E dp8Gsp,p8,t,t8dGsp8,p0,t8,t0d, s11d

whose meaning is the following: the transition probability
from p0 at t0 to p at t can be obtained by summing over all
possible intermediate statesp8 at time t8 the product of the
probabilities of transition sp0,t0d→ sp8 ,t8d and sp8 ,t8d
→ sp ,td.

Thed function appearing in the Green function Eq.(10) is
a consequence of the deterministic slowing down of the fast
electron due to collision with background cold electrons. The
function inside thed symbol gives an implicit form forpstd,

arctanspd − p − arctansp0d + p0 − st − t0d = 0. s12d

From this relation between momentum and time, we can eas-
ily obtain the slowing down timets− t0 by settingp=0 at t
= ts,

ts = p0 − arctanp0, s13d

where ts is normalized tot. From the implicit relation be-
tween p and t, we obtain the following expression for the
collisional energy-loss ratedg /dt=−g /p. G is a transition
probability and is also apropagatorso that it can be used to
express the evolution of anyfsp ,td,

fsp,td =E dp0fsp0,t0dGsp,p0,t,t0d. s14d

In the following, we are concerned about the propagation
of a single relativistic electron, as the generalization to an
arbitrary initial distribution function fsp0d can be easily
achieved through linear combination in Eq.(14).

V. ENERGY DEPOSITION PROFILE AND MEAN
PENETRATION DEPTH

We have depicted a generic electron trajectory in Fig. 3,
where sex,ey,ezd is a Cartesian basis. Kinetic energy is de-
livered to the target plasma all along the path followed by a
fast electron. Hence, to evaluate the size of the plasma vol-
ume heated by the relativistic electron, we have to calculate
not only the penetration depth but also the radial dispersion
of the electrons and the longitudinal spreading.

Thus, to quantify the size of the heated volume, we define
three characteristic lengths[2,22]: (i) the mean penetration
depthkzl, (ii ) the longitudinal dispersion orstraggling factor
s=Îkzl2−kz2l defining the statistical spreading of a set of
electrons with the same initial condition, and(iii ) the mean

FIG. 4. Energy deposition profile of a 1 MeV electron forZ
=1 andZ=2. Also plotted is the case where pitch angle scattering
has been ignored. Length is normalized tol [see Eq.(1)].

FIG. 5. Slowing down length forZ=1, 3/2, 2, 5/2, and 3. The
upper curve is forZ=1. Length is normalized tol [see Eq.(1)].
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radial sizeof the heated volumeÎkr2l. Here, the bracketskl
stand for an average over the various realizations of the col-
lisional noise. An explicit procedure for this average is de-
fined below.

A. Mean penetration depth

We will consider the mean longitudinal position as a func-
tion of the energy. In order to determine this quantity, we
write down thestochastic Langevin equationof motion av-
eraged over the various realizations of the collisional noise,

Kdz

dt
L =

dkzl
dt

=K p

g
cos uL . s15d

The velocityvz=p cosu /g is a randomfunction of time be-
cause of pitch angle scattering. Then, based on the equiva-
lence between aFokker-Planckequation and aLangevin
equation[12], the previous statistical average over the real-
izations of the collisional noise can be performed through the
following substitution[7]:

kgspdl =E dp gspdGsp,p0,t,t0d, s16d

wheregspd is any function of the stochastic variablep. As
we have expandedG over the set of the spherical harmonic
functionsYl

m, we express the longitudinal velocity over the
same basis,

dz

dt
=

p

g
cosu =Î4p

3

p

g
Y1

0sm,wd. s17d

We insert Eq.(17) into Eq. (15) and perform the average
(16). We obtain the following expression:

dkzl
dt

=E dpÎ4p

3

p

g
Y1

0sm,wdGsp,p0,t,t0d. s18d

The integration over the momentum volume elementdp
=p2dm df can be achieved with the help of the orthogonal
properties of the spherical harmonics and the Dirac identity
d(fsxd)=oi dsx−xid / uf8sxdux=xi

. Thus

FIG. 6. Slowing down length
vs initial energyg0. (a), (c), and
(e) are forZ=1, 2, 3, 4, 5, and 10
and for g0 ranging, respectively,
from 1 to 2, 1 to 4, and 1 to 20.
(b), (d), and(f) are forZ=10, 20,
40, 60, and 80. Length is normal-
ized tol [see Eq.(1)].
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d„arctanspd − p − arctansp0d + p0 − st − t0d…

=
g2std
p2std

d„p − psp0,t0,td…, s19d

where psp0,t0,td is the zero forp of the function in thed
symbol. The velocity alongez is finally given by

dkzl
dt

= −
pstd
gstdH fgstd − 1gsg0 + 1d

fgstd + 1gsg0 − 1dJsZL+1d/2

, s20d

where pstd fgstdg must be understood aspsp0,t0,td
fgsp0,t0,tdg and we have setm0=1 (by an appropriate orien-
tation of the Cartesian axis). Since we assume that the elec-
trons lose their energy continuously, a one-to-one relation
can be established between timet and energyg. The use of
the energy rather than time is not a drawback. On the con-
trary, as we address the issue of the energy deposition as a
function of position,g is the pertinent variable to express
range, straggling, and radius. Usingdg /dt=−g /p and Eq.
(20), we obtain the inverse of the energy-loss rate per unit
length,

dkzl
dg

= −
p2

g2H sg − 1dsg0 + 1d
sg + 1dsg0 − 1dJsZL+1d/2

. s21d

Finally, an integration over the energy fromg0 to g with the
initial condition kzlsg0,g0d=0 gives us the average distance
traveled alongez as a function of the energy,

kzlsg,g0d = Sg0 + 1

g0 − 1
DsZL+1d/2E

g

g0

dg
p2

g2Sg − 1

g + 1
DsZL+1d/2

.

s22d

Equation(22) expresses the average distance traveled by a
relativistic electron interacting with a plasma with ion charge
stateZ as a function of its initial energyg0.

The average full slowing down length, i.e., thestopping
length, is obtained by setting in Eq.(22) the energyg to rest
energyg=1, when the electron stops. For small values ofZ,
we can explicitly express this stopping length. For example,
assumingL=1 and a hydrogenlike targetZ=1, we obtain
from Eq. (22)

FIG. 7. Slowing down lengthkzls1;g0d, mean radius tokr2l1/2,
and straggling lengths vs initial energyg0 for Z=1 (solid lines) and
Z=2 (dotted lines). (a) Energyg0 range from 1 to 4,(b) energyg0

range from 1 to 20. All lengths are normalized tol; see Eq.(1).
Upper curves correspond tokzl, intermediate curves tokr2l1/2, and
lower curves tos.

FIG. 8. Slowing down length vs ion chargeZ. (a) For g0=1.2,
1.4, 1.6, 1.8, and 2; the upper curve is forg0=2. (b) For g0=2, 4, 6,
8, and 10; the upper curve is forg0=10.

FIG. 9. Energy deposition in a hydrogenlike plasmasZ=1d for
electron energy ranging fromg0=2 to g0=10.
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kzls1;g0d =
g0 + 1

g0 − 1
Sg0 −

1

g0
− 2 ln g0D . s23d

For example, the explicit expression forZ=3 is reported in
the final section.

In Fig. 4, we have plotted the energyg as a function of
the traveled length for an initial energy equal to 1 MeV
sg0=2d for Z=1 and 2; in order to illustrate the impact of the
pitch angle scattering, we have also plotted the very same
expression when pitch angle scattering is ignored[ZL+1 is
set to 0 in Eq.(22)]. Clearly, pitch angle scattering shortens
this slowing down length by a factor of the order 2. ForZ
=1, half of the initial energy is deposited in the plasma on
the last two-fifths of the stopping length. Consider a plasma
with Z=1 and n=1032 cm−3 for which the unit lengthl
=20 mm. From the formula(23) applied to a 1 MeV elec-
tron, electron energy deposition ends up after 7mm and after
10 mm when pitch angle scattering is neglected. Even for the
caseZ=1, ignoring pitch angle scattering gives rise to a large
deviation from the full relativistic kinetic model. Obviously
this deviation will increase withZ so that the standard slow-
ing down model becomes particularly inappropriate for the
high Z target.

Plotted in Fig. 5 is the normalized electron penetration
depthkzls1;g0d as a function of initial energyg0 for five low
values ofZL=1,3/2,2,5/2, and 3; theinitial kinetic energy
g0−1 ranges from 0 MeV to 2.5 MeV. Finally, in Fig. 6, we
have displayed this normalized penetration depth for various
values of the charge state and initial energy; this parametric
study clearly displays that the mean penetration depth tends
to be a linear function of the initial energyg0 at an energy
threshold function of the charge state. This asymptotic be-
havior is due to the ultrarelativistic limitp,g in Eq. (22)
and to the smoothing effect of the highZ exponent in Eq.
(22).

B. Straggling effect

The inclusion of pitch angle scattering also has a dramatic
effect on the dispersion of the penetration depth, namely the
straggling effect[22]. Many electrons will have the mean
range although some will have a higher range and some will
have less than this average. This results in a finite width to
the electron range distribution known asrange straggling. To
define this range stragglings, we introduce the root-mean-
square deviation around the average longitudinal range,

ssg,g0d = Îkz2lsg,g0d − kzl2sg,g0d. s24d

In the previous section, we have already calculatedkzl so
that in order to calculates, we have now to evaluatekz2l.
This latter quantity is related to thevelocity autocorrelation
function. We first note that

dkz2l
dt

=Kdz2

dt
L = 2Kzstd

dzstd
dt
L . s25d

Then, for a given realization of the stochastic variablem
=cosu, the electron trajectory is a Brownian path whose
projection onez is the (random) distancezstd,

zstd =E
0

t

dt8
dz

dt8
st8d =E

0

t

dt8vzst8d. s26d

Substituting Eq.(26) into Eq. (25) and commuting integra-
tion and averaging bracket yields

dkz2l
dt

= 2E
0

t

dt8kvzstdvzst8dl. s27d

To expresskz2l, we integrate Eq.(27) with respect to time in
order to obtain

kz2lst,t0d = 2E
0

t

dt8E
0

t8
dt9kvzst9dvzst8dl. s28d

The quantityGzzst9 ,t8d=kvzst9dvzst8dl is thetwo time longitu-
dinal velocity autocorrelation functionand can be calculated
with the Green function of the collision operator. Note that in
Gzz, we havetù t8ù t9.

An electron starting at timet0=0 with the momentump0
will be found with the probabilityGsp8 ,p0,t8 ,t0ddp at later
time t8 in the momentum volume elementdp8 centered
aroundp8. Then, this very same electron will be found at
time t9 with momentum p9 with the probability
Gsp9 ,p8 ,t9 ,t8ddp9 in the momentum volume elementdp9
around p9. Hence, the conditional probability(density) to

FIG. 10. Energy deposition in a hydrogenlike plasmasZ=1d for
electron initial energy equal tog0=2 (a) andg0=10 (b).
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find this electron at timet8 with momentump8 and at timet9
with momentump9 is the productPsp9 ,p8 ,p0,t9 ,t8 ,t0d of
these two probabilities,

Psp9,p8,p0,t9,t8,t0ddp8dp9

= Gsp9,p8,t9,t8dGsp8,p0,t8,t0ddp8dp9. s29d

Note that if we integrate this later formula over the interme-
diate momentum p8, we just recover the Chapman-
Kolmogorov identity Eq.(11). The two-time longitudinal ve-
locity autocorrelation functionGzzst8 ,t9d is the average over

all the realization of the productvzst9dvzst8d over this prob-
ability P,

Gzzst8,td =E E dp dp8Psp8,p,p0,t8,t,t0d
pp8

gg8
cosu cosu8.

s30d

After some lengthy calculations, reported in the Appendix,
involving Clebsch-Gordan calculus, we end up with an ex-
plicit formula for kz2l,

kz2lsg;g0d =
2

3
E

g0

g

dg8
g82 − 1

g82 Sg8 − 1

g8 + 1
DsZL+1d/2E

g0

g8
dg9

g92 − 1

g92 Sg9 + 1

g9 − 1
DsZL+1d/2

+ 2Sg0 + 1

g0 − 1
Df3sZL+1dg/2E

g0

g8
dg9

g92 − 1

g92 Sg9 − 1

g9 + 1
DZL+1

. s31d

These integrals can be evaluated for integer values ofZL+1/2; despite the fact that the standard symbolic calculator provides
an analytical closed form of these integral, the final result contains a fairly large number of terms so that we report here only
the Z=1 case corresponding to a hydrogenlike plasma,

kz2ls1;g0d = h− 9 − 9g0 + 171g0
2 + 16p2g0

2 − 213g0
3 + 48p2g0

3 + 213g0
4 + 48p2g0

4 − 171g0
5 + 16p2g0

5 + 9g0
6 + 9g0

7

+ 192Li2s2,−g0dg0
2s1 + g0d3 − 24g0

2ln g0s3 + 15g0 + 9g0
2 + 5g0

3d − 12g0s1 + g0dln g0f3 − 6g0 − 2g0
2 − 6g0

3

+ 3g0
4 − 16g0s1 + g0d2lns1 + g0dgj/f9g0

2sg0 − 1d3g, s32d

where Li2 is the dilogarithm function[23].
In Fig. 7, we have plottedss1;g0d as a function of the

initial energy forZ=1 and 2. For low initial energy, below
2 MeV, s is of order of kzl /2. This means that the energy
deposition volume(hot spot) extended over a distance of the
order of the stopping length, i.e., the hot spot is broad. How-
ever, for higher energy above 2 MeV[Fig. 7(b)], kzl in-
creases faster thans and the energy deposition localization is
better defined than at low energy.

VI. MEAN-SQUARE RADIUS

As a result of multiple small-angle Coulomb scattering off
background plasma, a fast electron beam expands radially
during its propagation. This radial expansion determines the
size of the energy deposition volume. While this effect is
supposed to be important only for relatively highZ, we will
show that it has, in fact, a dramatic impact even for a hydro-
gen plasma.

To quantify this radial spreading, we define the mean
square radiuskr2l,

dkr2l
dt

=Kdsx2 + y2d
dt

L = 4Kxstd
dx

dt
L . s33d

Along the very same steps used to derive Eq.(28) from Eq.
(25), we can relate this mean-square radius to thetwo-time
transverse velocity autocorrelation function Gxx
=kvxst9dvxst8dl,

kr2lst,t0d = 4E
0

t

dt8E
0

t8
dt9kvxst9dvxst8dl, s34d

whereGxx is given by

Gxx =E E dp dp8Psp8,p,p0,t8,t,t0d
pp8

gg8

3sin u sin u8cosf cosf8. s35d

The explicit calculation ofkr2l, reported in the Appendix,
leads to the final result
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kr2lsg;g0d =
4

3
E

g

g0

dg8
g82 − 1

g82 Sg8 − 1

g8 + 1
DsZL+1d/2E

g8

g0

dg9
g92 − 1

g92 Sg9 + 1

g9 − 1
DsZL+1d/2

− Sg0 + 1

g0 − 1
Df3sZL+1dg/2E

g8

g0

dg9
g92 − 1

g92 Sg9 − 1

g9 + 1
DZL+1

. s36d

Note that Eq.(36) differs from Eq.(31) only by a numerical factor inside the integral overg9. The Z=1 andZ=2 cases are
displayed in Fig. 7; it confirms the expected dramatic impact of pitch angle scattering forZ=1 and 2:kr2l,kzl2. For the sake
of completeness, we report below the analytical result forZ=1,

kr2ls1;g0d = −
4

9
h9 − 45g0 + 4p2g0 + 138g0

2 + 12p2g0
2 − 138g0

3 + 12p2g0
3 + 45g0

4 + 4p2g0
4 − 9g0

5 + 48g0 Li 2s− g0ds1 + g0d3

− 12g0 ln g0s3 + 3g0 + 9g0
2 + g0

3d + 6g0s1 + g0dln g0f− 3 + 10g0 − 3g0
2 + 8s1 + g0d2lns1 + g0dgj/fg0

2sg0 − 1d3g;
s37d

whenZ is an integer,kr2l can also be expressed analytically[23].

VII. DISCUSSION AND CONCLUSION

In this paper, we have addressed the problem of the char-
acteristic size of the energy deposition volume for relativistic
electrons interacting with a cold plasma. The hot spot where
most of the energy is deposited is characterized by three
lengths: the stopping length, the straggling length, and the
mean-square transverse radius. In order to calculate these
three lengths, we have solved the relativistic kinetic equation
which extends theLandaucollisional operator to the relativ-
istic regime. The method proposed here, based on the Green
function of this relativistic operator, turned out to be very
efficient; for example, we were able to express these three
lengths. Equation(22), which is one of the three main results
of this paper, gives the range of a relativistic electron in a
Lorentzian plasma. Our method is not restricted to theZ=1
hydrogenlike case. As a matter of fact, forZ=3 the stopping
length is simply given by

F kzls1;g0d
cm

G = Sg0 + 1

g0 − 1
D2S4 ln

4g0

s1 + g0d2 +
1 − g0

2

g0
2 D

3
1

ln Lee
F1030 m−3

ne
G . s38d

Moreover, the two other results Eqs.(31) and (36) provide
the two other characteristic lengths of the hot spot.

This set of formulas allows us to study the parametric
dependence of the hot spot size. The impact ofZ is in fact
important, as illustrated in Fig. 8, where the behavior of the
stopping length as a function of the charge state is depicted.
In Fig. 9, we have plottedkr2l as a function ofkzl for several
initial energies in order to visualize the heated volume. A 3D
plot of the very same curves is depicted in Fig. 10 and pro-
vides a representation of the shape and size of the heated
volume for initial energy equal to 1 MeV and 5 MeV.

Besides this problem of the hot spot characteristic sizes,
our Green-function formalism is well suited to address a cer-

tain number of other important issues. The impact of beam
self-generated electric and magnetic field can be explored
through a perturbative expansion based on the field-free
Green functionG. A criterion for self-pinching can be estab-
lished. The calculation of bremsstrahlung emission by rela-
tivistic electrons relies on an accurate description of the en-
ergy and the pitch angle dynamic; again the Green function
G is the right tool to provide this description. All of these
topics will be considered in further studies.

APPENDIX: CALCULATION OF THE VELOCITY
AUTOCORRELATION FUNCTION

1. The longitudinal autocorrelation function

We report here in this appendix the calculation of the
longitudinal velocity autocorrelation function Gzz
=kvzst9dvzst8dl. We first express the velocityvz and vx with
the spherical momentum coordinates

vz =
p

g
cosu, vx =

p

g
sin u cosw. sA1d

Then, using the identities

cosu =Î4p

3
Y1

0su,wd,

sin u =Î2p

3
fY1

1su,wd − Y−1
1 su,wdg, sA2d
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we write down the component of the velocity in terms of
spherical harmonic functions

vz =Î4p

3

p

g
Y1

0su,wd,

vx =Î2p

3

p

g
fY1

1su,wd − Y−1
1 su,wdg. sA3d

As discussed in Sec. V B, the longitudinal velocity autocor-
relation function is given by

Gzzst,t8d =
4p

3
E E dp dp8Gsp,p8,t,t8d

3 Gsp8,p0,t8,t0d
pp8

gg8
Y1

0su,wdY1
0su8,w8d.

sA4d

In Eq. (A4), the volume element is defined asdp
=p2dp d2V. We consider first the angular integration over
d2V and d2V8. Substituting Eq.(10) for both Green func-
tions into Eq.(A4), we obtain the following expression for
the angular part of the integral in Eq.(A4),

4p

3 o
l=0

+`

o
m=−l

m=+l

o
l8=0

+`

o
m8=−l8

m8=+l8 E d2VE d2V8Yl
msu,wdYl

m*su8,w8dYl8
m8su8,w8dYl8

m8*su0,w0dY1
0su,fdY1

0su8,f8d

3H sg − 1dsg8 + 1d
sg + 1dsg8 − 1dJflsl+1dsZ+1dg/4H sg8 − 1dsg0 + 1d

sg8 + 1dsg0 − 1dJfl8sl8+1dsZ+1dg/4

. sA5d

The integration over the solid angled2V can be performed using orthogonality properties of the spherical harmonics,

E d2VYl
msu,wdYl8

m8su,wd = dll8dmm8, sA6d

whose application to Eq.(A5) yields

Gzzst,t8d =
4p

3 o
l8=0

+`

Yl8
m8*su0,w0dH sg − 1dsg8 + 1d

sg + 1dsg8 − 1dJsZ+1d/2H sg8 − 1dsg0 + 1d
sg8 + 1dsg0 − 1dJfl8sl8+1dsZ+1dg/4

3E d2V8Y1
0*su8,w8dYl8

m8su8,w8dY1
0su8,w8d. sA7d

In Eq. (A7), we have to integrate the product of three spheri-
cal harmonic functions. For clarity, we introduce the follow-
ing notation:

kYl1

m1Yl2

m2Yl3

m3l =
4p

3
Yl2

m2su0,w0d

3E d2V Yl1

m1*su,wdYl2

m2su,wdYl3

m3su,wd;

sA8d

such quantities appearing in Eq.(A7) describe the correlation
of the pitch angle at different time and include the initial
pitch angleu0. From the theory of angular momentum addi-
tion, the integral of the product of three spherical harmonics
is proportional to the Clebsch-Gordan coefficients and van-
ishes unless the followingselection rulesare satisfied[21]:
(i) ul1− l3uø l2ø l1+ l3, (ii ) l1+ l2+ l3 is an even number, and
(iii ) m2+m3=m1. Thus, in Eq.(A7), we have only two coef-

ficient kY1
0Y0

0Y1
0l andkY1

0Y2
0Y1

0l to calculate. With the use of a
Clebsch-Gordan calculator, we end up with

kY1
0Y0

0Y1
0l =

1

3
, kY1

0Y2
0Y1

0l =
1

3
s3 cos2u0 − 1d. sA9d

After performing the integration over the solid angle, we
have to integrate overp andp8 in Eq. (A4). To achieve this
task, we take advantage of the following identity:

d„fsxd… = o
i

dsx − xid
uf8sxdux=xi

, sA10d

where thexi’s are the zero of the functionf. This allows us to
reduce thed function in the Green function to the form
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dfarctanp − p − arctanp0 + p0 − st − t0dg

=
g2std
p2std

d„p − psp0,t0,td…, sA11d

wherepst ,p0,t0d is the solution of the equation

arctanp − p − arctanp0 + p0 − st − t0d = 0. sA12d

Using this relation, integration overp and p8 is straightfor-
ward and the longitudinal correlation function is finally
given by

Gzzst,t8d =
1

3

pstdpst8d
gstdgst8d

FS fgstd − 1gfgst8d + 1g
fgstd + 1gfgst8d − 1gD

sZ+1d/2

+ s3 cos2 u0 − 1dSgstd − 1

gstd + 1
DsZ+1d/2Sgst8d − 1

gst8d + 1
DZ+1Sg0 + 1

g0 − 1
Df3sZ+1dg/2G .

sA13d

We note, as expected, that this autocorrelation function depends on the initial pitch angleu0. In the main part of the paper, we
consider a well-collimated beam and we can orientate the system of the axis such thatu0=0. In this case, the numerical factor
in the square brackets reduces to 2. To calculatekz2l, we insert Eq.(A13) into Eq. (28) and consider the change of variable
t→g. Again, using Eq.(A11) we recover the expression Eq.(31).

2. The transverse autocorrelation function

The transverse autocorrelation function is calculated in a very similar way. In order to avoid lengthy calculations, we just
report the final result here,

Gxxst,t8d =
1

3

pstdpst8d
gstdgst8d

FS fgstd − 1gfgst8d + 1g
fgstd + 1gfgst8d − 1gD

sZ+1d/2

−
3 cos2u0 − 1

2
Sgstd − 1

gstd + 1
DsZ+1d/2Sgst8d − 1

gst8d + 1
DZ+1Sg0 − 1

g0 + 1
Df3sZ+1dg/2G .

sA14d

This allows us to recover Eq.(36) when cosu0=1.
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